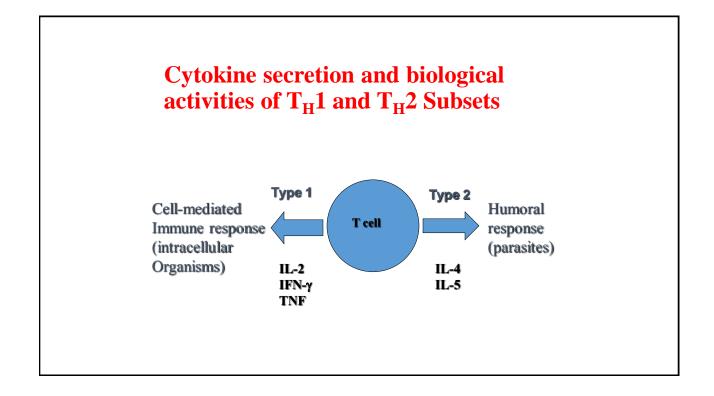
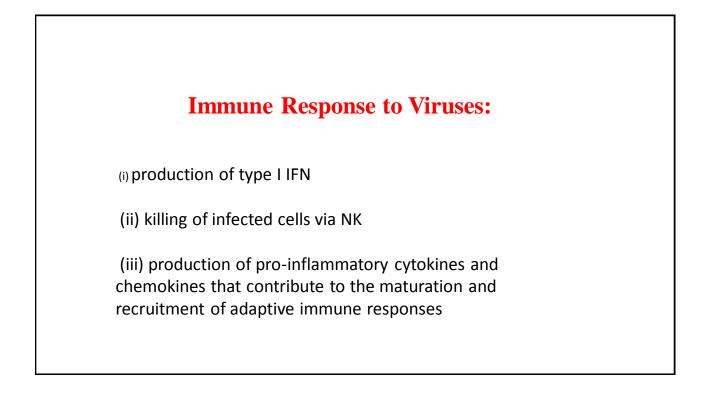
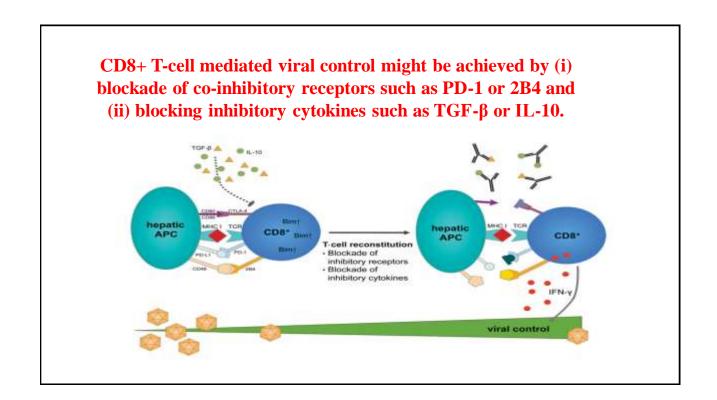
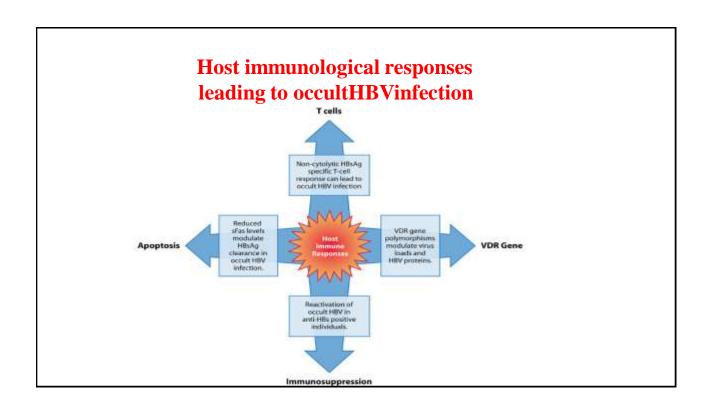

Immunological Mechanisms in OBI


Dr Houshang Rafatpanah Dept of immunology Mashhad University of Medical Sciences



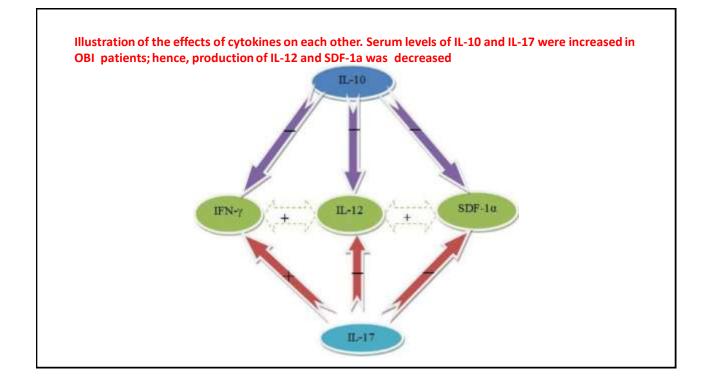






NK cell and T cell response at various stages of HBV infection

	HBV				
	Acute/resolving	Chronic Impaired IFN γ production, hypercytolytic			
NK cells	Suppressed during peak viraemia				
CD4 ⁺ T-cells	Multispecific and vigorous	Weak, monospecific, dysfunctional			
CD8+ T-cells	Multispecific and vigorous	Weak, monospecific dysfunctional,			

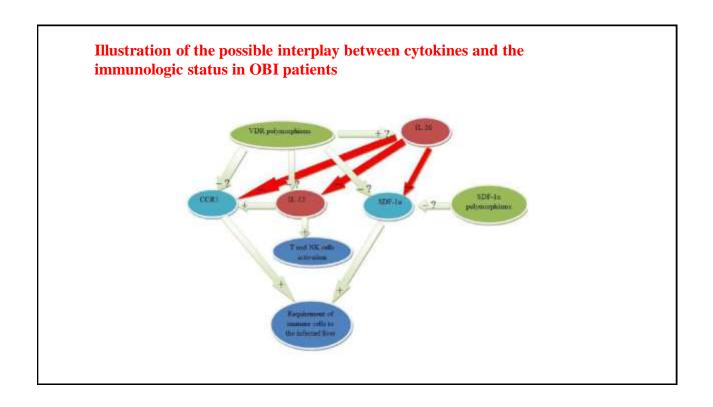


- Lower soluble Fas (sFas) in OBI than in chronic HBV infection
- The Fas expression system is known to modulate apoptosis of infected hepatocytes and also plays a key role in the removal of aged hepatocytes and maintenance of normal liver homeostasis.
- Lower sFas levels in OBI indicates decreased apoptotic inhibition in OBI and could be one of the mechanisms for clearance of HBsAg and downregulating HBV replication in OBI
- Reduced expression of CXCL12, a chemokine that modulates apoptosis, may play a role in OBI

• Differences in the HBV-specific cell-mediated immune response have been described in OBI

- Anti-HBc positive in Occult HBV patients had T-cell responses concurrent with protective memory, while anti-HBc-negative occult HBV patients had inadequacies in maturation of protective memory
- A noncytolytic HBsAg-specific T-cell response has been suggested as the potential mechanism for OBI associated with very low and undetectable levels of HBsAg

- Vitamin D3 and the VDR regulate several cytokines and are important determinants of the anti-HBV response
- Polymorphisms in the VDR gene have been linked to the outcome of OBI
- Differences in HBV DNA levels and loss of HBeAg have been linked to certain VDR genotypes
- Polymorphisms in the VDR gene have been detected in occult HBV infections.



Evaluated immunologic factor	OBI patients	Healthy clearance controls	p value	References		
Serum levels of cytokines and chemokines (pg/mL)						
IL-10	15.05 ± 1.1	10.2 ± 1.0	< 0.001	Arababadi et al."		
IL-17	12.48 ± 2.00	4.43 ± 0.54	< 0.001	Arababadi et al."		
IL-12	4.06 ± 0.53	5.34 ± 1.11	>0.1	Arababadi et al.18		
IFN-y	9.26 ± 0.8	4.2 ± 0.6	< 0.001	Arababadi et al.18		
SDF-1a	48.74 ± 11.35	58.54 ± 9.79	>0.1	Hassanshahi et al. ¹		
Polymorphisms IL-10	within cytokine and	I chemokine genes				
C/C	31 (54.4)	22 (22)	< 0.001	Arababadi et al.16		
A/C	24 (42.1)	55 (55)		0.2010/0.00123-00-		
A/A	2 (3.5)	23 (23)				
IL-12	an facel	And Decks				
C/C	0 (0)	10 (10)	0.033	Arababadi et al.16		
A/C	37 (64.9)	54 (54)				
A/A	20 (35.1)	36 (36)				
IFN-y	0250.852516	040000000				
A/A	18 (31.5)	28 (28)	>0.1	Arababadi et al.18		
A/T	25 (43.8)	47 (47)				
T/T	14 (24.7)	25 (25)				
SDF-1a	1.2223027202	5-309/2217				
A/A	6 (10.5)	11 (11)	<0.001	Hassanshahi et al.1		
A/G	20 (35)	45 (45)				
G/G	31 (28)	44 (44)				
1L-4	STATE 12					
CC	41 (72)	76 (76)	>0.1	Arababadi et al. ¹⁷		
CT	13 (23)	22 (22)				
TT	3 (5)	2 (2)				

٦

		Healthy clearance		
Evaluated factors	OBI patients	controls	p value	References
Serum levels of antibodies and complement factors (mg/dL)				
lgG	1308.21 ± 68.98	1605 ± 42.29	< 0.001	Arababadi et al. ¹⁶
lgM	229.8 ± 10.42	160.2 ± 84.53	< 0.001	Arababadi et al. ¹⁶
IgA	66.96 ± 5.53	63.57 ± 2.11	0.3126	Arababadi et al.*
C3	76.07 ± 4.691	49.33 ± 2.927	< 0.001	Arababadi et al. ¹⁶
C4	24.13 ± 1.084	50.71 ± 0.9222	< 0.001	Arababadi et al. ¹⁶
Complement function (%)				
CH50	183	170	>0.1	Arababadi et al. ⁸
PBMNCs number status (percentage of total lymphocytes)				
NK cells	11.22 ± 0.2	7.3 ± 0.15	<0.001	Arababadi et al.4
T CD8+ lymphocytes	13.67 ± 0.87	19.60 ± 0.66	< 0.001	Arababadi et al.4
Intensity of CCR5				
T CD8+ lymphocytes	5.4 ± 0.45	8.4 ± 0.13	< 0.001	Arababadi et al.*
NK cells	1.35 ± 0.10	2.46 ± 0.27	< 0.001	Arababadi et al.45

F

